JOM 23933

Substituentenabhängigkeit der Lithiumkoordination von Phosphinomethaniden und Molekülstrukturen von (TMEDA)Li[C(PPh₂)₂(SiMe₃)] und {(THF)Li[CH(PMe₂)₂]}₂ *

Hans H. Karsch, Gregor Grauvogl, Patrizia Mikulcik, Peter Bissinger und Gerhard Müller¹

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-85747 Garching (Deutschland) (Eingegangen den 27. Mai 1993)

Abstract

The molecular structures of the title compounds are closely related to other lithium diphosphinomethanides. Characteristic differences may be related due to the different substitution pattern of the diphosphinomethanide ligands.

Zusammenfassung

Die Molekülstrukturen der Titelverbindungen sind denen anderer Lithiumdiphosphinomethanidverbindungen sehr ähnlich. Allerdings lassen sich charakteristische Unterschiede, die auf unterschiedliche Substituenten der Diphosphinomethanidliganden zurückzuführen sind, herausarbeiten.

Key words: Lithium; Diphosphinomethanide; Silyl

1. Einleitung

Organolithiumverbindungen beanspruchen wegen ihrer Vielfalt nach wie vor großes Interesse; als Modellverbindungen und wegen ihres Synthesepotentials haben sie eine Schlüsselrolle inne. Das gilt auch für Lithiumverbindungen mit Phosphinomethanidliganden I, die wir seit einiger Zeit systematisch bezüglich des Einflusses von Co-Liganden L und den P- bzw. C-Substituenten (R bzw. X, Y) modellhaft untersuchen, um diese Ergebnisse auf die inzwischen große Zahl von Phosphinomethanidkomplexen anderer Koordinationszentren übertragen zu können.

$L_{x}Li[R_{2}\overline{P}-\overline{C}(X)(Y)]$

In der Reihe der Lithium-di phosphinomethanidkomplexe (X = PR₂) konnten dabei bisher zwei Strukturprinzipien II, III gefunden werden, je nachdem, ob ein- oder zweizähnige Co-Liganden die Koordinationssphäre des Lithiums absättigen.

Bei den Typen II und III liegt ein Chelatvierring LiPCP zugrunde. Die koordinative Absättigung des Lithiumatoms in II durch den TMEDA-Chelatliganden (KZ 4) führt zu einer monomeren Molekülstruktur, während in III zusätzliche Wechselwirkungen mit dem carbanionischen Kohlenstoff und schwache Kontakte zu den P-Atomen eines Nachbarmoleküls eine dimere Anordnung herbeiführen. Dies kann alternativ auch als eine Art intermolekularer 1,3-Diphosphaallylwechselwirkung verstanden werden, wie sie ähnlich, allerdings

Correspondence to: Prof. Dr. H.H. Karsch.

^{*} Herrn Prof. Dr. H. Nöth zum 65. Geburtstag gewidmet.

¹ Neue Adresse: Fakultät für Chemie, Universität Konstanz, Universitätsstr. 10, D-7750 Konstanz 1, Deutschland.

intramolekular, in La $[(Ph_2P)_2CH]_3$ realisiert ist [1]. Es ist jedoch im hier diskutierten Zusammenhang mit der Substituentenabhängigkeit wichtig anzumerken, daß sich IIIa, b und IIIc im Ausmaß dieser Wechselwirkungen wesentlich unterscheiden, wie die präzisierten Formeln IIIa, b und IIIc zeigen (dabei sind die unter-

schiedlich starken (langen) Kontakte durch entsprechend starke Bindunglinien idealisiert dargestellt) [2,3].

Hierbei war aber nicht klar, ob dieser Unterschied auf die verschiedenen P- oder C-Substituenten zurückzuführen ist. In beiden Reihen fehlten offensichtlich noch wichtige Bindeglieder, um den Einfluß der P- und C-Substituenten gegeneinander abwägen zu können: Insbesondere in der Reihe des Typs II die Variante mit R = Ph, $Y = SiMe_3$ und bei Typ III diejenige mit R = Me, Y = H. Diese fehlenden Lithiumdiphosphinomethanide waren auch im Rahmen der Synthese neuartiger Zirkonocenkomplexe [4] wegen der Analogie $[Cp_2Zr(Cl)]^+/Li^+$ [5] wichtig. Synthese, spektroskopische Eigenschaften und Molekülstrukturen dieser beiden Lithiumphosphinomethanide werden in dieser Arbeit mitgeteilt.

2. Synthese und Eigenschaften

2.1. $\{(THF)Li[HC(PMe_2)_2]\}_2$ (1)

Als solvatfreie Verbindung wird Li $[HC(PMe_2)_2]$ durch Metallierung von $CH_2(PMe_2)_2$ erhalten [6]. Durch Metallierung von $CH_2(PMe_2)_2$ [6] mit Li^tBu in Hexan kann in Gegenwart einer stöchiometrischen Menge THF die gewünschte Verbindung des Typs III, 1 isoliert werden (Gl. (1)).

Die farblosen Kristalle sind wie alle Lithiumphosphinomethanidverbindungen äußerst luftempfindlich. Sie sind in Kohlenwasserstoffen wie Pentan mäßig, in Toluol gut löslich. Ausweislich der { ${}^{1}H$ } ${}^{31}P$ - und { ${}^{1}H$ } ${}^{7}Li$ -NMR-Spektren [7*] liegen in Lösung mehrere unterschiedliche Spezies vor, die sich aber rasch ineinander umwandeln: bei +20°C bis -60°C beobachtet man jeweils nur ein Signal (δP : -43.49 s, δLi : 1.74 s). Beide Signale verbreitern sich bei weiterem Abkühlen und spalten in eine Vielzahl von Linien auf, die typische P-Li-Kopplungen (${}^{1}J(PLi) = 20-70$ Hz) erkennen lassen. Wegen der Verbreiterung und teilweisen

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

(1)

Überlagerung der Signale gelingt eine Zuordnung aber nicht zweifelsfrei Das jeweils intensitätsstärkste Signal im ³¹P- (-42.17 q, 23.6 Hz) und ⁷Li-NMR-Spektrum (2.0 d, 22.1 Hz) kann einer Spezies mit der Anordnung Li₁-P₁ zugeschrieben werden [8]. Im Hinblick auf die Molekülstruktur von {(THF)Li[C(PMe₂)(SiMe₃)₂]}₂, IV [9], ist für 1 in Lösung damit der Strukturvorschlag 1a mit einem Sechsring in Sesselkonformation die wahrscheinlich dominierende Species.

Aus dem Formelbild 1a geht unmittelbar hervor, daß sich die Struktur 1a sehr leicht, nämlich einfach durch Abdissoziation eines THF-Liganden unter gleichzeitiger Ausbildung zusätzlicher Li-P-Kontakte in die im Festzustand gefundene Molekülstruktur von 1 (s.u.) überführen läßt. Gleichzeitig wird deutlich, daß damit ein enger Zusammenhang mit der Festkörperstruktur des P-Phenylsubstituierten Analogons IIIc hergestellt ist: IIIc kann als Modell für den Übergangszustand von 1 (kristallin) \Rightarrow 1a (Lösung) gelten.

2.2. $(TMEDA)Li[C(PPh_2)_2(SiMe_3)]$ (2)

Das Lithiumsalz von $HC(PPh_2)_2(SiMe_3)$ ist bisher nur *in situ* dargestellt worden [10]. Durch Metallierung von $HC(PPh_2)_2(SiMe_3)$ mit LiⁿBu in Pentan kann in Gegenwart der stöchiometrischen Menge TMEDA 2 in Form farbloser Nadeln gem. Gleichung (2) erhalten werden.

2 ist nicht wie 1 selbstenzündlich, doch ist es ebenfalls sehr luftempfindlich. Wie bei allen Lithiumphosphinomethaniden führt die Hydrolyse zur Ausgangsverbindung, also HC(PPh₂)₂(SiMe₃), zurück. Wie 1 kann 2 in Pentan, besser in Toluol, gelöst werden, seine NMR-Spektren sind aber nicht temperaturabhängig: von $+30^{\circ}$ C bis -80° C ändern sich die Spektren praktisch nicht und zeigen in allen Fällen das Vorliegen der Struktureinheit an, die auch im Festzustand (s.u.) gefunden wird: Das {¹H}³¹P-NMR-Spektrum von 2 weist ein (nicht binominales) Quartett $({}^{1}J(PLi) = 48.6 \text{ Hz}) \text{ mit } \delta P = 22.61 \text{ auf. Die Tieffeld-}$ verschiebung (Koordinationsverschiebung $-\Delta\delta = 34.85$ relativ zu HC(PPh₂)(SiMe₃)) und die Kopplung weisen die Koordination beider P-Atome an das Li-Koordinationszentrum nach. Dementsprechend erscheint die ⁷Li-Resonanz bei δ Li = 2.39 als Triplett (48.6 Hz). In diesem Zusammenhang sei die bisher nicht berichtete Tatsache erwähnt, daß für IIb nur eine Singulettresonanz im {¹H}³¹P-NMR-Spektrum bei $\delta P - 0.29$ ($\Delta \delta =$ 21.21 relativ zu $H_2C(PPh_2)_2$) und im $\{^{1}H\}^{7}Li$ -NMR-Spektrum ebenfalls nur eine Singulettresonanz bei δLi 2.16 gefunden werden. Offensichtlich führt die erhöhte Carbanion-Nucleophilie in IIb (gegenüber 2) zu diesem dynamischen Verhalten in Lösung.

3. Molekülstrukturen der Lithiumphosphinomethanide

3.1. $\{(THF)Li[HC(PMe_2)_2]\}_2$ (1)

Die Röntgenstrukturanalyse (Tabellen 1-3; Abb. 1) ergibt das Vorliegen eines zentrosymmetrischen Koordinationsdimeren vom Typ III.

Wie in IIIa und IIIb, aber im Gegensatz zu IIIc sind die beiden Li-P(1)/P(2)-Abstände nahezu gleich und nur wenig länger als die in IIIa, b (s. Tabelle 3). Dies zeigt den (erwarteten) besseren Donorcharakter der PMe₂- gegenüber der PPh₂-Gruppe an. Deutlich verkürzt gegenüber IIIa, b ist aber der Li--C*-Abstand, der auch kürzer als in IIIc ist und mit 221.9(6) Å den Wert "normaler" Li-C-Abstände, wie z.B. in $(PMDETA)Li[HC(PMe_2)(SiMe_3)]$ (Li-C: 2.207(5) Å) [11] fast erreicht. Im Gegenzug sind die Li-P*-Abstände deutlich länger als in IIIa, b. Alle anderen Abstände und Winkel bewegen sich im vergleichbaren Rahmen. Insgesamt kann also für 1 sowohl eine hohe Nucleophilie der P-Atome als auch des carbanionischen C-Atoms festgestellt werden, die insgesamt zu einer weitgehenden koordinativen Absättigung der Lithiumatome führen, so daß zusätzliche Li-P*-Kontakte nur noch eine untergeordnete Rolle spielen.

3.2. $(TMEDA)Li[C(PPh_2)_2(SiMe_3)]$ 2)

Die Röngenstrukturanalyse (Tabellen 4-6; Abb. 2) weist das Vorliegen einer monomeren, spirocyclischen

TABELLE 1. Abstände (Å) und Winkel (°) in der Molekülstruktur von 1 mit Standardabweichungen in Einheiten der letzten signifikanten Stelle in Klammern

P(1)-C(1)	1.768(2)	P(2)-C(1)	1.770(2)
P(1)-C(11)	1.855(2)	P(2)-C(21)	1.851(2)
P(1)-C(12)	1.842(2)	P(2)-C(22)	1.838(2)
O(1)-C(01)	1.436(3)	O(1)-C(04)	1.437(3)
C(01)-C(02)	1.498(4)	C(03)-C(04)	1.493(4)
C(02)-C(03)	1.493(4)		
Li-P(1)	2.697(4)	Li-P(2)	2.685(4)
Li-P(1*)	3.068(5)	Li-P(2*)	3.108(5)
Li-C(1*)	2.219(6)	Li-O(1)	1.918(4)
P(1)-C(1)-P(2)	110.3(1)	C(01)-O(1)-C(04)	106.5(2)
C(01)-O(1)-Li	125.6(2)	C(04)-O(1)-Li	123.0(2)
O(1)-C(01)-C(02)	106.9(2)	O(1)-C(04)-C(03)	105.3(2)
C(01)-C(02)-C(03)	105.7(2)	C(02)-C(03)-C(04)	105.0(2)
C(1)-P(1)-C(11)	108.7(1)	C(1)-P(2)-C(21)	108.6(1)
C(1)-P(1)-C(12)	103.9(1)	C(1)-P(2)-C(22)	104.0(1)
C(11)-P(1)-C(12)	97.2(1)	C(21)-P(2)-C(22)	97.6(1)
C(1)-P(1)-Li	82.1(1)	C(1)-P(2)-Li	82.4(1)
C(11)-P(1)-Li	128.2(1)	C(21)-P(2)-Li	126.9(1)
C(12)-P(1)-Li	130.2(1)	C(22)-P(2)-Li	130.9(1)
P(1)-Li-P(2)	65.3(1)	$O(1)-Li-C(1^*)$	117.3(2)
$P(1)-Li-C(1^*)$	114.9(2)	P(2)-Li-C(1*)	116.3(2)
$P(1)-Li-P(1^*)$	112.6(1)	$P(2)-Li-P(2^*)$	113.1(1)
$P(1)-Li-P(2^*)$	82.6(1)	P(2)-Li-P(1*)	83.6(1)

Lithiumverbindung des Typs II mit dem Donorsatz P_2Li nach, bei der zusätzlich zu den zwei N-Atomen des TMEDA-Liganden noch die beiden P-Atome des Phosphinomethanids Li-koordiniert sind. Eine Li-C(Carbanion) Wechselwirkung wird weder intra- noch intermolekular beobachtet.

2 unterscheidet sich von IIa und IIb nur geringfügig (Tabelle 6). Auffallend an der genannten Li-Koordination in 2 sind die ungleichmäßigen Bindungswinkel am Lithium (Tabelle 4). Während sich die kleineren Winkel N-Li-N und P-Li-P zwanglos durch das Vorliegen

TABELLE 2. Fraktionelle Atomkoordinaten und äquivalente isotrope Auslenkungsparameter für 1 mit Standardabweichungen in Einheiten der letzten signifikanten Stelle in Klammern $(U_{eq} = \sum_i \sum_i U_{ij} a_i^* a_i^* a_i a_j)$

Atom	x	у	z	$U_{\rm eq}$
P(1)	0.27539(7)	0.33616(6)	0.36778(7)	0.025
P(2)	0.13947(7)	0.44106(6)	0.69260(6)	0.024
O(1)	-0.0823(2)	0.1512(2)	0.6493(2)	0.037
C(1)	0.2417(3)	0.4865(2)	0.4979(3)	0.025
C(11)	0.4770(3)	0.1910(3)	0.3538(3)	0.040
C(12)	0.3462(3)	0.4178(3)	0.1729(3)	0.037
C(21)	0.2997(3)	0.3233(3)	0.7742(3)	0.038
C(22)	0.0856(3)	0.6201(3)	0.8047(3)	0.035
C(01)	-0.2312(3)	0.1072(3)	0.6691(3)	0.040
C(02)	-0.2970(4)	0.0655(4)	0.8369(3)	0.055
C(03)	-0.1647(5)	0.0637(4)	0.9040(4)	0.057
C(04)	-0.0155(4)	0.0721(3)	0.7663(4)	0.057
Li(1)	-0.0358(5)	0.3372(4)	0.5561(5)	0.029

TABELLE 3. Ausgewählte Abstände (Å) und Winkel (°) für Lithiumdiphosphinomethanide des Typs III: 1, IIIa, IIIb, IIIc

	1	IIIa [3]	IIIb [2]	IIIc [2]
C-P(1)	1.768(2)	1.795(2)	1.780(4)	1.764(3)
C-P(2)	1.770(2)	1.795(2)	1.795(4)	1.768(3)
Li- P(1)	2.697(4)	2.588(3)	2.641(8)	2.607(6)
Li-P(2)	2.685(4)	2.684(3)	2.655(8)	3.056(6)
Li-C*	2.219(6)	2.290(4)	2.298(9)	2.242(8)
Li-P(1*)	3.068(5)	2.945(3)	2.959(8)	2.949(6)
Li-P(2*)	3.108(5)	2.998(3)	2.999(8)	3.181(6)
Li–O	1.918(4)	1.923(3)	1.924(8)	1.916(6)
P(1)-Li-P(2)	65.3(1)	63.6(2)	65.3(1)	60.2(3)
C-P(1)-Li	82.1(1)	90.6(2)	90.3(1)	93.9(2)
C-P(2)-Li	82.4(1)	89.8(2)	87.2(1)	79.4(2)
P(1)-C-P(2)	110.3(1)	102.7(2)	104.8(1)	108.4(2)

der Chelatringe erklären lassen, verwundern vor allem die Winkel N-Li-P, von denen einer sogar 143.8(4)° erreicht. Ein noch etwas größerer Wert wird auch in IIb beobachtet [12] und auch IIa weist einen N-Li-P-Winkel von immerhin noch über 130° auf [2]. Damit dürften sterische Wechselwirkungen zwischen den P-Substituenten und den Methylresten des TMEDA-Liganden ursächlich sein, die in 2 und IIb (P-Phenyl-Substituenten) naturgemäß besonders ausgeprägt sind. Erwartungsgemäß ist in IIb der Winkel P(1)-C-P(2) am größten. Damit geht offensichtlich eine besonders gute Wechselwirkung mit den P-Atomen im Sinne eines Ylidformalismus V einher, die hier zu besonders kurzen

Abb. 1. Struktur des zentrosymmetrischen Dimeren von 1 im Kristall und verwendete Atomnumerierung. Die mit einem * bezeichneten Atome wurden durch die Symmetrieoperation -x, 1-y, 1-z aus den in Tabelle 2 angegebenen Koordinaten erzeugt (ORTEP; die Ellipsoide umschreiben 50% Aufenthaltswahrscheinlichkeit; H(1) mit willkürlichem Radius; alle anderen H-Atome weggelassen).

TABELLE 4. Abstände (Å) und Winkel (°) in der Molekülstruktur von 2

TABELLE 5.	Fraktionelle	Atomkoordinaten	und	äquivalente	iso-
trope Auslenki	ungsparamete	r für 2			

P(1)-C	1.754(3)	P(2)-C	1.771(4)
P(1)-C(111)	1.846(4)	P(2)-C(211)	1.842(4)
P(1)-C(121)	1.843(4)	P(2)-C(221)	1.845(4)
Si-C	1.840(3)	Si-C(1)	1.868(5)
Si-C(2)	1.872(5)	Si-C(3)	1.886(5)
Li-P(1)	2.530(7)	Li-P(2)	2.532(6)
Li-N(1)	2.054(8)	Li-N(2)	2.049(7)
P(1)-C-P(2)	106.8(2)		
P(1)-C-Si	125.4(2)	P(2)-C-Si	125.5(2)
Li-P(1)-C	92.8(2)	Li-P(2)-C	92.3(2)
Li-P(1)-C(111)	121.1(2)	Li-P(2)-C(211)	116.7(2)
Li-P(1)-C(121)	119.2(2)	Li-P(2)-C(221)	126.4(2)
C(111)-P(1)-C(121)	102.2(2)	C(211)-P(2)-C(221)	100.6(2)
C-P(1)-C(111)	110.1(2)	C-P(2)-C(211)	112.0(2)
C-P(1)-C(121)	111.1(2)	C-P(2)-C(221)	108.5(2)
P(1)-Li-P(2)	68.0(2)	N(1)-Li-N(2)	88.7(3)
P(1)-Li-N(1)	143.8(4)	P(2)-Li-N(1)	120.8(3)
P(1)-Li-N(2)	116.0(3)	P(2)-Li-N(2)	124.5(3)

P-C-Abständen führt. Auch in 2 sind diese Abstände noch geringfügig kürzer als in IIa, was erneut belegt, daß Phenylgruppen besser als Methylgruppen in diesem Sinne P-Ylide stabilisieren (vgl. hierzu auch IIIa, b, c und 1). Dies wäre allerdings kaum signifikant, wenn nicht berücksichtigt wird, daß die kürzeren Li-P-Abstände für IIa diesen Ylidformalismus eigentlich

Abb. 2. Molekülstruktur von 2 im Kristall (ohne H-Atome).

Atom	x	у	Z	U _{eq}
P(1)	0.2622(1)	0.17250(5)	0.17289(5)	0.031
P(2)	0.36904(9)	0.26416(5)	0.27968(5)	0.030
Si	0.2516(1)	0.10448(5)	0.32806(5)	0.034
N(1)	0.2673(4)	0.4160(2)	0.1347(2)	0.070
N(2)	0.4739(4)	0.3252(2)	0.0826(2)	0.054
C(1)	0.0880(5)	0.1256(4)	0.3619(4)	0.060
C(2)	0.2438(8)	0.0057(3)	0.2926(3)	0.059
C(3)	0.3596(6)	0.1015(3)	0.4072(2)	0.050
С	0.3053(3)	0.1733(2)	0.2618(2)	0.030
C(11)	0.1345(7)	0.4288(4)	0.1264(4)	0.124
C(12)	0.3141(7)	0.4640(3)	0.1938(4)	0.116
C(13)	0.3378(7)	0.4350(3)	0.0698(3)	0.087
C(21)	0.5972(6)	0.3038(4)	0.1085(3)	0.108
C(22)	0.4475(7)	0.2819(3)	0.0197(3)	0.103
C(23)	0.4689(6)	0.4045(4)	0.0676(3)	0.087
C(111)	0.0931(4)	0.1446(2)	0.1634(2)	0.035
C(112)	0.0460(5)	0.0753(3)	0.1438(2)	0.049
C(113)	-0.0868(6)	0.0644(4)	0.1393(3)	0.068
C(114)	-0.1688(5)	0.1212(4)	0.1524(3)	0.063
C(115)	-0.1253(5)	0.1901(4)	0.1719(3)	0.062
C(116)	0.0047(4)	0.2019(3)	0.1764(2)	0.048
C(121)	0.3455(4)	0.0963(2)	0.1252(2)	0.033
C(122)	0.4523(4)	0.0613(2)	0.1523(2)	0.038
C(123)	0.5235(5)	0.0108(3)	0.1129(3)	0.047
C(124)	0.4887(5)	-0.0049(3)	0.0453(3)	0.054
C(125)	0.3838(5)	0.0294(3)	0.0173(2)	0.056
C(126)	0.3138(5)	0.0802(3)	0.0562(2)	0.047
C(211)	0.5362(4)	0.2593(2)	0.3094(2)	0.032
C(212)	0.5990(4)	0.3257(3)	0.3237(3)	0.051
C(213)	0.7274(5)	0.3272(3)	0.3425(3)	0.067
C(214)	0.7934(5)	0.2603(3)	0.3443(3)	0.061
C(215)	0.7345(4)	0.1933(3)	0.3291(2)	0.047
C(216)	0.6054(4)	0.1933(2)	0.3110(2)	0.037
C(221)	0.2911(4)	0.3017(2)	0.3592(2)	0.038
C(222)	0.1676(5)	0.3257(3)	0.3531(3)	0.065
C(223)	0.1000(5)	0.3519(3)	0.4126(4)	0.093
C(224)	0.1575(7)	0.3549(3)	0.4753(4)	0.101
C(225)	0.2812(8)	0.3309(3)	0.4823(3)	0.090
C(226)	0.3470(6)	0.3062(3)	0.4253(2)	0.055
Li	0.3320(7)	0.3083(4)	0.1550(3)	0.045

TABELLE 6. Ausgewählte Abstände (Å) und Winkel (°) für Lithiumdiphosphinomethanide des Typs II: 2, IIa, IIb

2	IIa [2]	IIb [12]
1.754(3)	1.762(3)	1.722(3)
1.771(1)	1.771(3)	1.722(2)
2.530(1)	2.507(6)	2.582(4)
2.532(1)	2.516(6)	2.582(6)
2.054(1)	2.056(7)	2.033(5)
2.049(1)	2.065(7)	2.072(6)
68.0(1)	68.9(2)	68.4(1)
92.8(1)	88.0(1)	88.0(1)
92.3(1)	91.6(2)	88.0(1)
106.8(1)	107.2(2)	114.8(2)
	2 1.754(3) 1.771(1) 2.530(1) 2.532(1) 2.054(1) 2.049(1) 68.0(1) 92.8(1) 92.3(1) 106.8(1)	2 IIa [2] 1.754(3) 1.762(3) 1.771(1) 1.771(3) 2.530(1) 2.507(6) 2.532(1) 2.516(6) 2.054(1) 2.056(7) 2.049(1) 2.065(7) 68.0(1) 68.9(2) 92.8(1) 88.0(1) 92.3(1) 91.6(2) 106.8(1) 107.2(2)

Formel	C ₉ H ₂₁ LiOP ₂ (Monomer)	$C_{34}H_{45}LiN_2P_2Si$
M	214.154	578 72
Kristallsystem	Triklin	Orthorhombisch
Raumgruppe	P1 (Nr. 2)	P2,2,2, (Nr. 19)
a (Å)	8.858(1)	10.467(1)
b (Å)	9.068(1)	17.652(2)
c (Å)	9.111(1)	19.061(2)
α (°)	85.51(1)	90.
β (°)	69.88(1)	90.
γ (°)	73.09(1)	90.
$V(Å^3)$	657.3	3521.8
Ζ	2 monomere	
	Formeleinh.	4
$D_{\rm her}$ (g cm ⁻³)	1.082	1.091
μ (Mo-K ₂) (cm ⁻¹)	2.9	1.8
F(000) (e)	232	1240
T (°C)	-50	-50
Diffraktometer	Enraf-Nonius	
	CAD4	Syntex-P2
Strahlung	Mo-K _a , $\lambda =$	Mo-K _a , $\lambda =$
÷	0.71069	0.71069
Monochromator	Graphit	Graphit
Scan	θ/2θ	ω
Scan-Breite (in ω)	$0.8 \pm 0.35 \tan \theta$	0.8
Scan-Geschw.		
(° min ⁻¹)	1–10	0.7-29.3
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.638	0.550
hkl-Bereich	+11, ±11, ±11	$+19, +20, \pm 11$
Reflexe (gem./		
unabh.)	2859/2859	5426/4887
R _{int}	-	0.026
Reflexe beob.		
$(F_{o} \geq 4.0 \sigma(F_{o}))$	2556	4887
H-Atome (gef./ber.)	21/-	35/10
Parameter verf.	134	465
R ª	0.037	0.045
wR ^b	0.052	0.037
$\Delta \rho_{\rm fin} ({\rm max}/{\rm min})$		
$(e Å^{-3})$	+0.29/-0.34	+0.53/-0.41
$\overline{R} = \sum (F_{\rm o} - F_{\rm c}) / \Sigma$	$ F_{o} ; {}^{b}wR = [\Sigma w(F_{o})]$	$\frac{F_{\rm o} - F_{\rm c} ^2}{1 \sum_{\nu=1}^{2} $

TABELLE 7. Kristallstrukturdaten für 1 und 2

/2. $w = 1/\sigma^2(F_o)$. Minimierte Funktion: $\sum w(|F_o| - |F_c|)^2$.

deutlich begünstigen sollten. Der Vergleich dieser Li-P-Abstände für IIa/2 belegt erneut, daß die PMe₂-Gruppen nucleophiler sind. Nicht unbedingt zu erwarten war aber in diesem Zusammenhang, daß diese Abstände für 2 kürzer als bei IIb sind. Dies verdeutlicht, daß Silvlgruppen nicht nur Carbanionen stabilisieren (und damit deren Nucleophilie verringern: α -Effekt; vgl. hierzu auch IIIa, b, c und 1) sondern in Phosphinomethaniden auch die Nucleophilie des P-Atoms erhöhen; ein Verhalten, daß sich als β -Effekt einordnen läßt. Bei Organosilylverbindungen sind α und β -Effekt wohlbekannt [13], der hier erstmals strukturell erkennbare "Phospha-analoge β -Effekt" ist auch aus dem Koordinationsverhalten von Phosphinomethaniden gegenüber [Cp2(Cl)Zr]+-Koordinationszentren abzuleiten [4].

Zusammenfassend ist festzustellen, daß die Strukturuntersuchungen von 1 und 2 die Trends in koordinierten Phosphinomethaniden verdeutlichen: C-Silylund auch C-Phosphinogruppen reduzieren die Carbanion- und erhöhen die Phosphornucleophilie (α - und β -Effekt). Methylgruppen erhöhen als P-Substituenten gegenüber Phenylsubstituenten ebenfalls dessen Nucleophilie. Darüberhinaus ist bemerkenswert, daß der Lösungsvorgang 1 (kristallin) \Rightarrow 1a (Lösung) sich im Rahmen bekannter Strukturprinzipien mit IIIc-analoger Anordnung als Übergangszustand deuten läßt.

4. Experimenteller Teil

4.1. Präparatives

Alle Arbeiten wurden unter striktem Luft- und Feuchtigkeitsausschluß durchgeführt, Lösungsmittel und Geräte waren entsprechend vorbehandelt. Die Ausgangsverbindungen stammen aus kommerziellen Quellen (Li^tBu, LiⁿBu) bzw. wurden nach Literaturvorschrift hergestellt (HC(PPh₂)₂(SiMe₃) [10], H₂C-(PMe₂)₂ [6]). Für die Aufnahme der NMR-Spektren stand ein Jeol GX400 Spektrometer zur Verfügung.

4.1.1. $\{(THF)Li[HC(PMe_2)_2]\}_2$ (1)

Zu 1.15 g (8.45 mmol) $CH_2(PMe_2)_2$ werden 0.69 ml (8.45 mmol) THF pipettiert. Nach der Zugabe von 5.38 ml (8.45 mmol) Li^tBu-Lösung (1.57 n in Pentan) bei -78°C wird die Reaktionsmischung langsam auf Raumtemperatur erwärmt. Während einer Woche scheiden sich aus der Lösung farblose Kristalle ab, von denen die überstehende Lösung abdekantiert wird und die vorsichtig i. Vak. zur Trockene gebracht werden: 1.65 g (91%), Schmp. 109°C. NMR-Spektren s. Text.

4.1.2. $(TMEDA)Li[C(PPh_2)_2(SiMe_3)]$ (2)

Zu 7.01 g (15.39 mmol) CH(PPh₂)₂(SiMe₃) in 25 ml Pentan werden bei -78°C 9.14 ml (15.39 mmol) LiⁿBu-Lösung (1.68 n in Hexan) und 2.29 ml TMEDA (15.39 mmol) pipettiert. Man Läßt auf Raumtemperatur erwärmen. Die im Laufe von zwei Wochen gebildeten Kristalle werden dreimal mit je 25 ml Pentan gewaschen und i.Vak. getrocknet: 7.41 g (83%), Schmp. 191°C.

¹H-NMR ($C_6 D_6$) δ (Phenyl H2, H6) 8.04 (m, 8H), δ (Phenyl H3, H5) 7.31 (t, N = 14.4 Hz, 8H), δ (Phenyl, H4) 7.12 (t, N = 14.6 Hz, 4H), δ (NCH₃) 1.59 (s, 12H), δ (NCH₂) 1.46 (s, 4H), δ (SiCH₃) 0.03 (s, 9H); {¹H}¹³C-NMR (C₆D₅CD₃) δ (Phenyl, C1) 146.09 (m), δ (Phenyl C2, C6) 132.80 (m), δ (Phenyl C3, C4, C5) Signalüberlagerung mit Solvens, δ (NCH₂) 56.52 (s), δ (NCH₃) 45.11 (s), δ (P₂CSi) 30.30 (br), δ (SiCH₃) 5.32 (s); {¹H}¹³P-NMR (C₅D₅CD₃) δ 22.61 (q, 48.6 Hz); {¹H}⁷Li-NMR (C₆D₅CD₃) δ 2.39 (t, 48.6 Hz).

4.2. Kristallstrukturanalysen von 1 und 2

Geeignete Einkristalle von 1 und 2 wurden aus Pentan erhalten, bei Trockeneistemperatur unter Argon in Markröhrchen eingeschmolzen und direkt auf dem Diffraktometer bei -50°C untersucht. Die Messungen deuteten für 1 trikline Symmetrie an, bei 2 ergaben die Beugungsbilder eine orthorhombische Zelle, wobei die systematischen Auslöschungen die Raumgruppe $P2_12_12_1$ nahelegten. Weder Achsenphotos noch Reduzierte-Zellen-Berechnungen ergaben Anzeichen für höhere metrische Zellsymmetrie. Die genauen Zellkonstanten wurden durch Verfeinerung nach der Methode der kleinsten Quadrate an den Bragg-Winkeln von 25 (1) bzw. 15 (2) hochindizierten Reflexen aus allen Teilen des reziproken Raumes ermittelt, die vorher auf dem Diffraktometer sorgfältig zentriert worden waren. Tabelle 7 faßt die wichtigsten Daten zu den Strukturbestimmungen zusammen *.

Die gemessenen integrierten Intensitäten wurden auf Lp-Effekte korrigiert. Die wiederholte Messung von drei Standardreflexen (1: -5-1-3, -1-13, 050; 2: 400, 060, 002) ergaben bei 2 keinen nennenswerten Abfall in der Intensität, bei 1 wurde dagegen eine Abnahme von 47% beobachtet, die zufriedenstellend nichtlinear korrigiert werden konnte. Absorptionskorrekturen wurden bei beiden Verbindungen nicht für nötig befunden. Beide Strukturen wurden mit Direkten Methoden gelöst (SHELXS-86) und mit Fourier-Synthesen vervollständigt. Bei 1 konnten nach anisotroper Verfeinerung der Nicht-H-Atome alle H-Atome in Differenzsynthesen lokalisiert werden. In den letzten Verfeinerungszyklen wurden die THF-H-Atome konstant gehalten, die Methylreste als starre Gruppen behandelt und H(1) am carbanionoiden C-Atom isotrop mitverfeinert (SHELX-76). Bei 2 konnten 35 H-Atome gefunden werden, die restlichen wurden nach idealisierter Geometrie berechnet. 26 H-Atome an den Phenylringen und den Si-Methylsubstituenten wurden isotrop verfeinert, der Rest konstant in die Strukturfaktorenberechnung miteinbezogen (SHELX-76; angepaßt für die Verfeinerung von 500 Parametern). Die TMEDA-C-Atome zeigten deutliche Anzeichen für die bei diesem Liganden übliche Fehlordnung. Sie konnte jedoch nicht aufgelöst werden. Die Verfeinerung des enantiomeren Koordinatensatzes ergab keinerlei Unterschiede. Die Restelektronendichten zeigten keine Auffälligkeiten.

Literatur und Bemerkungen

- 1 H.H. Karsch, A. Appelt und G. Müller, *Angew. Chem.*, 98 (1986) 832.
- 2 H.H. Karsch, B. Deubelly und G. Müller, J. Organomet. Chem., 352 (1988) 47.
- 3 H.H. Karsch, L. Weber, D. Wewers, R. Boese und G. Müller, Z. Naturforsch. 39b (1984) 1518.
- 4 (a) H.H. Karsch, G. Grauvogl, B. Deubelly und G. Müller, Organometallics, 11 (1992) 4238; (b) H.H. Karsch, B. Deubelly, G. Grauvogl, J. Lachmann und G. Müller, Organometallics, 11 (1992) 4245; (c) H.H. Karsch, G. Grauvogl, M. Kawecki und P. Bissinger, Organometallics, 12 (1993) 2757.
- 5 A.J. Kos, E.D. Jemmis, P.v.R. Schleyer, R. Gleiter, U. Fischbuch und J.A. Pople, *J. Am. Chem. Soc.*, 103 (1981) 4996.
- 6 H.H. Karsch und H. Schmidbaur, Z. Naturforsch., Teil B, 32 (1977) 762.
- 7 Die ¹H- und {¹H}¹³C-NMR-Spektren von 1 sind mit denen von Li[HC(PMe₂)₂][6], in THF/Benzol gelöst, naturgemäß identisch.
- 8 Quintettresonanzsiganle im ³¹P-NMR-Spektrum deuten darüberhinaus an, daß auch Aggregationen der Art Li₂P am Lösungsgleichgewicht teilnehmen.
- 9 H.H. Karsch, K. Zellner, S. Gamper und G. Müller, J. Organomet. Chem., 414 (1991) C39.
- 10 H. Schmidbaur, J.R. Mandl, J.M. Bassett, G. Blaschke und B. Zimmer-Gasser, Chem. Ber., 114 (1981) 433.
- 11 H.H. Karsch, K. Zellner, P. Mikulcik, J. Lachmann und G. Müller, Organometallics, 9 (1990) 190.
- 12 D.J. Brauer, S. Hietkamp und O. Stelzer, J. Organomet. Chem., 299 (1986) 137.
- 13 In hierzu leicht modifizierter Weise beziehen sich α und β -Effekt bei Organosilylverbindungen auf die Stabilisierung von Carbanionen (α -Effekt) bzw. Carbokationen (β -Effekt) durch Silylgruppen infolge Hyperkonjugation.

^{*} Weitere Angaben zu den Kristallstrukturanalysen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 57366, der Autoren und des Zeitschriftenzitats angefordert werden.